1 Fig. 1 shows part of the curve $y=\mathrm{e}^{2 x} \cos x$.

Fig. 1
Find the coordinates of the turning point P .

2 Find the exact gradient of the curve $y=\ln (1-\cos 2 x)$ at the point with x-coordinate $\frac{1}{6} \pi$.

3 (i) Given that $y=\mathrm{e}^{-x} \sin 2 x$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) Hence show that the curve $y=\mathrm{e}^{-x} \sin 2 x$ has a stationary point when $x=\frac{1}{2} \arctan 2$.

4 Fig. 8 shows parts of the curves $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$, where $\mathrm{f}(x)=\tan x$ and $\mathrm{g}(x)=1+\mathrm{f}\left(x-\frac{1}{4} \pi\right)$.

Fig. 8
(i) Describe a sequence of two transformations which maps the curve $y=\mathrm{f}(x)$ to the curve $y=\mathrm{g}(x)$. [4] It can be shown that $\mathrm{g}(x)=\frac{2 \sin x}{\sin x+\cos x}$.
(ii) Show that $\mathrm{g}^{\prime}(x)=\frac{2}{(\sin x+\cos x)^{2}}$. Hence verify that the gradient of $y=\mathrm{g}(x)$ at the point $\left(\frac{1}{4} \pi, 1\right)$ is the same as that of $y=\mathrm{f}(x)$ at the origin.
(iii) By writing $\tan x=\frac{\sin x}{\cos x}$ and using the substitution $u=\cos x$, show that $\int_{0}^{\frac{1}{4} \pi} \mathrm{f}(x) \mathrm{d} x=\int_{\frac{1}{\sqrt{2}}}^{1} \frac{1}{u} \mathrm{~d} u$. Evaluate this integral exactly.
(iv) Hence find the exact area of the region enclosed by the curve $y=\mathrm{g}(x)$, the x-axis and the lines $x=\frac{1}{4} \pi$ and $x=\frac{1}{2} \pi$.

5 Differentiate $x^{2} \tan 2 x$.

6 Given that $y=\sqrt[3]{1+x^{2}}$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

7 Given that $y=x^{2} \sqrt{1+4 x}$, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x(5 x+1)}{\sqrt{1+4 x}}$.

